일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 지도학습 분류
- 뉴런 신경망
- 가중치 업데이트
- ICDL 파이썬
- 데이터 전 처리
- 수치 맵핑 기법
- 명목형
- 결측값 처리
- 수치형 자료
- 다중선형 회귀
- 지니 불순도
- 딥러닝 역사
- MSEE
- 항공지연
- 스케이링
- 불순도
- 학습용데이터
- 회귀 알고리즘 평가
- 이상치 처리
- 지도학습
- 경사하강법
- 알고리즘 기술
- LinearRegression 모델
- 평가용 데이터
- 웹 크롤링
- 분류 머신러닝 모델
- 데이터 분리
- 퍼셉트론
- 머신러닝 과정
- 더미 기법
- Today
- Total
목록분류 전체보기 (53)
끄적이는 기록일지
[머신러닝] 03.지도학습-회귀_(1) 회귀 아이스크림 가게를 운영한다고 가정하면 지금까지 판 데이터를 가지고 우리는 예상되는 아이스크림 판매량만 주문하길 원한다. 이 때 평균 기온을 활용하여 판매량을 예측할 수 있다면? 1. 문제 kcy51156.tistory.com 지난 시간엔 회귀에 대해 배웠습니다. 이번에는 지도학습의 분류의 예를 들어보겠습니다. 해외여행을 가려고 한다. 이 때 계획에 차질이 없게 항공지연을 피하고자 한다. 기상정보(구름양, 풍속)를 활용하여 해당 항공의 지연여부를 예측할 수 있다면? 0. 문제정의 1) 데이터: 과거 기상 정보(풍속) X과 그에 따른 항공 지연 여부 Y 2) 목표: 현재 풍속에 따른 항공 지연 여부 예측하기 → 분류 알고리즘 이용 1. 분류란? 1) 주어진 입력 ..
[머신러닝] 03.지도학습-회귀_(3) 다중 선형 회귀 [머신러닝] 03.지도학습-회귀_(2) 단순 선형 회귀 [머신러닝] 03.지도학습-회귀_(1) 회귀 아이스크림 가게를 운영한다고 가정하면 지금까지 판 데이터를 가지고 우리는 예상되는 아이스크림 판매량 kcy51156.tistory.com 1. 회귀 알고리즘 평가 1) 어떤 모델이 좋은 모델인지 평가할 때는 목표에 얼마나 잘 달성했는지 정도를 평가한다. 2) 실제 값과 모델이 예측하는 값의 차이에 기반한 평가 방법 사용하는데 ex) RSS, MSE, MAE, MAPE, R² 2. RSS – 단순 오차 1) 실제 값과 예측 값의 단순 오차 제곱 합 2) 값이 작을수록 모델의 성능이 높음 3) 전체 데이터에 대한 실제 값과 예측하는 값의 오차 제곱의 총합..
[머신러닝] 03.지도학습-회귀_(2) 단순 선형 회귀 [머신러닝] 03.지도학습-회귀_(1) 회귀 아이스크림 가게를 운영한다고 가정하면 지금까지 판 데이터를 가지고 우리는 예상되는 아이스크림 판매량만 주문하길 원한다. 이 때 평균 기온을 활용하 kcy51156.tistory.com 지난 시간에 이어 아이스크림 판매량을 예로 들어 설명하겠습니다. 평균 기온에 따라 아이스크림 판매량을 알아보았는데 이번에는 입력값 X에 강수량을 추가한다면 어떻게 될까요? 평균 기온(X1)과 평균 강수량(X2)에 따른 아아스크림 판매량(Y)을 예측하는 것이기 때문에 ≫ 여러 개의 입력값(X)으로 결괏값(Y)을 예측하고자 하는 경우는 다중 선형 회귀를 사용한다. 1. 다중 선형 회귀(Multiple Linear Regressi..
[머신러닝] 03.지도학습-회귀_(1) 회귀 아이스크림 가게를 운영한다고 가정하면 지금까지 판 데이터를 가지고 우리는 예상되는 아이스크림 판매량만 주문하길 원한다. 이 때 평균 기온을 활용하여 판매량을 예측할 수 있다면? 1. 문제 kcy51156.tistory.com 지난 시간에 이에 단순 선형 회귀에 대해 알아보겠습니다. 1. 단순 선형 회귀 1) 데이터를 설명하는 모델을 직선 형태로 가정 2) 𝑌 ≈ 𝛽0 + 𝛽1𝑋 가정 직선을 구성하는 𝜷𝟎(y절편)와 𝜷𝟏(기울기)를 구해야함. 3) 실제 정답과 내가 예측한 값과의 차이가 작을수록 좋음 - 실제 값과 예측 값의 차이를 구하기. - 실제 값과 예측 값의 차이의 합으로 비교하기에는 예외가 존재한다. - 실제값-예측값이 일치하지 않았는데 총 합계가 0이..