250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 더미 기법
- 수치 맵핑 기법
- 알고리즘 기술
- 학습용데이터
- 분류 머신러닝 모델
- 딥러닝 역사
- 명목형
- 결측값 처리
- 퍼셉트론
- 지니 불순도
- 데이터 전 처리
- ICDL 파이썬
- 평가용 데이터
- 가중치 업데이트
- 회귀 알고리즘 평가
- 지도학습
- 수치형 자료
- 웹 크롤링
- 스케이링
- 이상치 처리
- 경사하강법
- MSEE
- 항공지연
- 다중선형 회귀
- 머신러닝 과정
- 뉴런 신경망
- LinearRegression 모델
- 데이터 분리
- 불순도
- 지도학습 분류
Archives
- Today
- Total
목록이상치 처리 (1)
끄적이는 기록일지

[머신러닝] 02.데이터 전처리_(3) 수치형 자료 [머신러닝] 1.자료형태_(3) 수치형 자료 [머신러닝] 1.자료형태_(2) 범주형 자료 [머신러닝] 1.자료형태_(1) * 머신러닝 : 데이터 자료를 바탕으로 수행하는 분석방식 → 자료의 형태를 파악하는 것은 kcy51156.tistory.com 1. 결측값(Missing data)처리 1) 일반적인 머신러닝 모델의 입력 값으로 결측값을 사용X → 따라서 Null, None, NaN 등의 결측값을 처리 해야함 2. 결측값 처리 방식 1) 결측값이 존재하는 샘플 삭제 2) 결측값이 많이 존재하는 변수 삭제 3) 결측값을 다른 값으로 대체 3. 이상치(Outlier)처리 1) 이상치가 있으면, 모델의 성능을 저하할 수 있음 2) 이상치는 일반적으로 전 처..
AI실무
2021. 9. 15. 01:26